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ABSTRACT

Spatial embodied intelligence often operates under partial observability, where
agents must act to acquire missing information rather than passively consume
complete observations. In such settings, progress depends on actively selecting
informative actions that reduce uncertainty and support the construction of spatial
understanding. While multimodal foundation models have shown strong per-
formance on passive multimodal perception and reasoning tasks, their ability to
support active, self-directed exploration under partial observability has not been
systematically studied. In particular, it remains unclear whether and how these
models can decide what to observe next in order to build and maintain a coherent
spatial belief over time. We therefore propose THEORY OF SPACE, defined as an
agent’s ability to actively acquire information through self-directed, active explo-
ration and to construct, revise, and exploit a spatial belief from sequential, partial
observations. We implement THEORY OF SPACE using a benchmark with textual
and visual environments. Rather than solving specific tasks, the goal is curiosity-
driven exploration to build a complete, accurate spatial belief. A core innovation is
spatial belief probing: we prompt it to reveal its internal spatial belief as a cognitive
map at each step, letting us measure the quality of its underlying spatial model.
Our evaluation of state-of-the-art models on a suite of downstream tasks reveals
critical bottlenecks: (1) The Active-Passive Gap: Performance degrades when
agents must autonomously gather information (e.g., GPT-5.2: 0.57—0.46); (2)
Inefficiency: Models explore in an unsystematic way and with high redundancy,
failing to match the efficiency of program-based proxies while producing no better
results. Through belief probing, we diagnose that perception acts as an initial
bottleneck, yet global beliefs suffer further from instability that causes spatial
knowledge to degrade over time. Finally, using a false belief paradigm to test belief
revision, we uncover Belief Inertia where agents fail to overwrite obsolete priors.
This issue exists in text agents but is notably severe in vision-based models.

& Website https://theory-of-space.github.io/

) Code https://github.com/mll-lab-nu/Theory-of-Space
5 Data https://huggingface.co/datasets/MLL-Lab/tos—-data

1 INTRODUCTION

Spatial embodied intelligence relies on active exploration. Unlike disembodied systems that pas-
sively process fixed observations, an embodied agent could take actions to alter its position in the
environment as exploration, selectively acquiring observations needed to construct spatial knowledge
for various spatial tasks. Cognitive science shows that such active exploration leads to substantially
better spatial understanding than passively receiving the same information, even when observations
are identical (Held & Hein, [1963; |Chrastil & Warren, 2012; [2013)). But exploration isn’t simply
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Figure 1: THEORY OF SPACE: active exploration, probed belief, and evaluation. Left: a top-down
view of agent trajectory under partial observability in multiple-room scenes. Middle: the agent’s
action loop of moving, rotating, and observing in text- or vision-based environments, receiving
egocentric observations and updating an internal belief. Right: evaluation through exploitation of the
belief in spatial tasks and direct probing via probed cognitive maps.

about collecting more observations. It is about efficiency, acting under uncertainty to target what is
unknown or ambiguous in the agent’s spatial belief and maximize information gain.

We propose THEORY OF SPACE as a framework that explicitly treats exploration as a first-class
decision-making problem, decoupled from any single downstream task, focusing on opening the box
of the agent’s internal spatial belief. Just as Theory of Mind (ToM) measures how agents model the
hidden mental states of others, THEORY OF SPACE assesses an agent’s ability to model the hidden
physical structure of the world. We define THEORY OF SPACE as an embodied agent’s ability to
actively construct, revise in a dynamic environment, and exploit an internal spatial belief formed
through active exploration. Beyond end-task evaluation, THEORY OF SPACE directly probes what
the agent knows, what remains uncertain, and how effectively its actions reduce those uncertainties,
measured by the number of exploration steps and the uncertainty resolved per action. Figure []]
provides an overview of THEORY OF SPACE’s active exploration, belief probing, and end-task
evaluation.

We apply THEORY OF SPACE to evaluate multimodal language models, which are promising can-
didates for embodied agents. By integrating vision and language, they support unified perception,
reasoning, and action over time, yet existing foundation-model benchmarks offer little insight into
these capabilities. Most current benchmarks fall into two categories: passive (Weston et all, 2013}

Shi et al, 2022; [Yang et al.| [2025¢; |Gholami et al.| 2025}, [Yang et al.,2025a), where the agent is only
asked to reason over given observations, and task-driven (Gordon et al., 2018}, [Shridhar et al.| 2020b}

Li et all,[2023}; [Yang et al.} 2025b)), where the agent must achieve a specific goal (e.g., “find the red

chair’).

In this work, we propose to systematically evaluate the active process of spatial belief construction.
Unlike passive benchmarks, our THEORY OF SPACE benchmark requires agents to actively explore
via moving, rotating, and observing to build coherent global beliefs. We implement a scalable
environment using ThreeDWorld and Objaverse (Deitke et al.| [2022) that provides
Text-based and Vision-based worlds to localize perception versus reasoning failures. After active
exploration, we evaluate the process along two axes: (i) belief exploitation via spatial downstream
tasks that probe route-level and survey-level knowledge (Siegel & White), [1975]; [Montello}, [1998));
and (ii) exploration efficiency via the number of exploration steps and the accumulated information
gain curve over steps, capturing how quickly an agent reduces uncertainty rather than merely
increasing coverage. Finally, we design scripted proxy agents that execute strong reference trajectories
to disentangle exploration from reasoning. Our evaluation of state-of-the-art foundation models
reveals both promising capability in the pure text world and striking limitations in the vision world
under THEORY OF SPACE. Active exploration remains a primary bottleneck. Models perform
reasonablely well in passive setting, but degrade when they must actively gather information (e.g.,
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GPT-5.2: 57.1 — 46.0; GEMINI-3 PRO: 60.5 — 57.3; Figure.[2). We also find a major efficiency
gap: rule-based proxy agents reach target coverage in ~ 9 steps, whereas foundation models explore
redundantly, requiring > 14 steps without improving belief accuracy. Thus, even when models can
reason about spatial tasks (as reflected in passive performance), they fail to autonomously structure
the information-gathering needed to solve them.

Beyond downstream task scores, a core
contribution of THEORY OF SPACE is ex- "f .Claude-4.5-Sonnet GLM-4.6V @& GPT5.2 + Gemini-3-Pro \33 Qwen3-VL
. . oge . . Vision: Evaluation Performance vs Exploration Cost
plicit cognitive-map probing, which pro-
vides a direct window into the agent’s la- 60%{ = ’
tent spatial belief as it is constructed and
revised. Rather than treating the agent as
a black box whose internal state is only
inferred from final answers, we prompt
the model to expose its evolving cognitive
map during exploration, enabling mea-
surement of both belief accuracy and be-
lief uncertainty at each step. This probing- 10%
based assessment uniquely supports fine- 0% L : : : : : :
grained diagnosis of how rpodels repre- 8 10 gxplor;iion cosy 0%
sent space: it reveals that while perception
acts as an initial bottleneck, global beliefs
also suffer severely from instability, caus-
ing knowledge to degrade over time. This
allows us to track belief evolution over
time, attribute failures to specific repre-
sentational breakdowns, and evaluate whether an agent truly “knows what is uncertain” rather than
merely producing plausible outputs.
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Figure 2: Evaluation accuracy vs. exploration cost for
active exploration in vision-world. Faded icons mark
the passive setting, where the agent gets a pre-generated
exploration history and only reasons.

Finally, to evaluate the mechanics of dynamic spatial updating, we introduce a False Belief paradigm.
By altering the environment (relocating or reorienting objects) after the agent’s initial exploration, we
uncover a phenomenon we term spatial belief inertia: agents (particularly in vision-based settings)
struggle to overwrite obsolete spatial priors with new sensory evidence. Despite directly observing
the new configuration, models persist in their initial, now incorrect coordinates. This reveals a critical
failure in spatial memory revision, where foundational models lack the plasticity to revise their
internal cognitive maps in response to physical changes.

An important direction for future work is to extend THEORY OF SPACE beyond single-agent settings
to multi-agent exploration, where additional challenges arise around coordination and aligning (or
sharing) spatial beliefs across agents.

2 THEORY OF SPACE

To build agents with spatial intelligence, we argue for evaluating not merely passive reasoning, but the
active, self-directed construction of spatial belief from partial observations. We introduce THEORY
OF SPACE, a conceptual counterpart to Theory of Mind (ToM). While ToM models hidden mental
states of others, THEORY OF SPACE models uncertain, currently unobserved structure of space.

& Definition: THEORY OF SPACE

Ability to construct, revise, and exploit an internal spatial belief.

Here, an internal spatial belief is a mental model (Taylor & Tverskyl |1992) of spatial layout and
relations maintained in working memory and updated from partial observations. We formalize
THEORY OF SPACE within a partially observable framework over a spatial structure S € S. The
agent interacts with S to generate a history h; = (0.1, ao.t), where o and a denote observations and
actions. We define THEORY OF SPACE as the capacity to manipulate a probabilistic belief B, through
three core operations:
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1. Construct: To form a globally consistent internal spatial belief by actively seeking out and
integrating partial observations. Formally, the agent integrates h; to approximate the true
posterior, denoted as B;(S) = P(S | ht).

2. Revise: To dynamically update the internal belief by using new information acquired
through further exploration to resolve conflicts with prior beliefs. Upon an environmental
shift S — S’, the agent utilizes exploratory actions Ah to minimize the divergence from the
new ground truth, i.e., Byyar — P(S” | hitat).

3. Exploit: To utilize the current belief to support spatial tasks. The agent utilizes a policy
7 conditioned on the belief, m(a; | B), to perform a downstream task 7. In a benchmark
context, we measure the value of belief by the performance metric J achieved by this policy:

T (w(-[Be), T).
2.1 A PARADIGM FOR ASSESSING THEORY OF SPACE OF LARGE FOUNDATION MODELS

We propose a new paradigm for Assessing THEORY OF SPACE of large foundation models, which
consists of three essential components below.

Task-Agonistic Active Exploration to Move From Passive Viewer to Active Explorer. Evaluating
THEORY OF SPACE requires a shift from downstream tasks to exploration, i.e., how an agent explores
and decides “what to see next”. In detail, we place the agent in a partially observable environment
and explicitly challenge the LLM/VLM agent to actively select actions for itself, including moving,
rotating, observing, and terminating. The primary goal is not to complete a downstream task or follow
pre-collected trajectories, but to build a general-purpose internal model from its own self-directed
exploration with minimal cost. This process encompasses both initial Belief Construction and
dynamic Belief Revision. Inspired by the false belief paradigm in Theory of Mind (Wimmer &
Perner, [1983) and spatial belief revision (Knauff et al., 2013)), we evaluate whether an agent can
detect dynamic environmental changes and correctly revise its internal belief during exploration.
This demonstrates the ability to customize beliefs given evolving observations. Consequently, the
model must identify what remains uncertain and actively terminate exploration only upon acquiring
sufficient evidence to form an accurate and responsive internal map.

Belief Exploitation Assessment. To translate THEORY OF SPACE into concrete evaluation tasks,
we draw insights from the development of spatial representations (Siegel & Whitel |[1975; Montello,
1998)) and define two tasks to measure an agent’s ability to exploit its internal belief for goal-directed
behavior: (1) Belief on Route evaluates a path-based understanding of space organized around
landmarks such as pairwise spatial relationships along a egocentric navigation; (2) Belief on Survey
assesses a map-like “bird’s-eye view” that represents space allocentrically, allowing for the inference
of global relationships.

Explicit Probing of the Internal Spatial Belief. Behavioral success such as whether the agent finds
the chair cannot directly reveal the quality of agent’s internal model. We require the agent to explicitly
represent its spatial belief by probing its cognitive map at any point of exploration. Cognitive maps
are structured allocentric representations of space, which is well-established in neuroscience (Tolman)
1948; |0’ Keefe & Dostrovskyl, (1971} |[Hafting et al.l 2005). Thus, we use cognitive maps as the
canonical representation of the hidden structure of space. In our implementation, we probe the
agent’s internal belief by requiring it to externalize a structured cognitive map. We evaluate the
map’s Correctness, and we diagnose reasoning breakdowns with dynamic signals that capture how
reliably observations are integrated, tracked over time, and kept coherent across local and global
structure. Additionally, we explicitly test the agent’s belief on uncertainty by identifying unobserved
regions to measure its uncertainty modeling. This shifts the evaluation from behavioral success to a
direct assessment of representational competence, giving us a window into the agent’s spatial belief
development.

3 BENCHMARKING THEORY OF SPACE ABILITY FOR FOUNDATION MODELS

Unlike task-driven benchmarks that only test task completion, we aim to answer “can the agent
form a global environmental belief through exploration?”. We structure the benchmarking into two
phases. In the Exploration Phase I, the agent interacts with the environment to construct spatial
belief by selecting and executing actions in the action space in §[3.1} and gather a sequence of local
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observations to integrate them into a unified spatial belief. In the Reasoning Phase II, the agent is
asked to conduct spatial tasks (detailed in §[3.2).

3.1 SPATIAL ENVIRONMENT CONSTRUCTION

To ensure controlled experimentation, we procedurally generate multi-room indoor layouts on an
N x M grid. Each scene is populated with n indoor objects, each assigned a 2D integer coordinate
and a cardinal orientation from (N, S, E, W). The agent begins at a random position, is informed
of the total number of rooms and the names of all objects in the scene, and then starts exploration.
Following the Gym-style interface (Brockman et al.,|2016), we define procedurally generated, highly
scalable environments in which each random seed deterministically instantiates a distinct multi-room
layout.

Action Space in the Environment. The agent’s interaction with the world is designed to focus on
high-level decision-making rather than low-level motor control: Got o to move directly to a currently
visible object; Rotate to turn in place by 90°, 180°, or 270°; Observe to perceive visible objects
in the 90° field of view; and Query to obtain a visible object’s absolute 2D coordinates. We
additionally assign costs of 1 to Observe and 2 to Query, encouraging Query to be used only
when necessary to resolve ambiguity. However, across all models Query is invoked only rarely, so
we restrict attention to Observe and measure exploration efficiency by step count instead of action
cost.

Observation Feedback from a Text-Vision Parallel Environment. We offer both text-based and
vision-based environments, enabling diagnostic analysis of spatial reasoning. Each Observe action
returns both textual and visual feedback from a 90° field of view. The Text World provides symbolic
observations with discrete bins for direction and distance (e.g., “chair is front-left and near”, detailed
below), isolating pure spatial reasoning. The Visual World instead supplies ego-centric RGB images
rendered in ThreeDWorld (Gan et al. 2021) with Objaverse assets (Deitke et al.l [2022), requiring
perception to recover spatial relations. To calibrate perception in the visual setting, we provide two
reference images, indicating unit distance (1 grid unit) / angle (a 22.5° angular cone), and showing
all objects with their names and canonical “front” orientation, respectively. Details are shown in

Appendix

Spatial Relation Representation. To ensure that agents perceive and communicate about space using
a consistent language across tasks and modalities, we discretize spatial relationships for directions and
distances. For allocentric direction, we discretize into eight 45° bins aligned with the four cardinal
and four intercardinal directions, denoted compactly as {N, NE, E, SE, S, SW, W, NW}. Each bin spans
45° around its heading (e.g., N = [—22.5°,22.5°)). For egocentric direction, within a 90° forward
field of view (FOV), we use five labels: front-left [—45°, —22.5°), front—-slight-left
[-22.5°,0), front 0°, front-slight-right (0,22.5°], and front-right (22.5° 45°].
For distance, measured in map units independent of direction, we define six bins: same = 0, near
(0, 2], mid (2, 4], slightly far (4, 8], far (8,16], and very far (16, 32].

3.2 DOWNSTREAM SPATIAL TASKS

We use open-ended questions rather than multiple-choice questions to reduce the risk of knowledge
leakage. Drawing on prior work (Siegel & Whitel |1975; [Montello, |1998)), we define tasks to evaluate
an agent’s Route and Survey knowledge, shown in Table[I] Route belief captures how an agent
encodes paths and spatial relations from an egocentric step-by-step perspective. Survey belief is a
map-like, allocentric representation. An overview of the tasks is present in Figure 3]

3.3 ASSESSMENT DIMENSIONS

We define assessment dimensions that align with the core THEORY OF SPACE abilities: construction
and revision are evaluated via exploration efficiency and belief quality, while exploitation is evaluated
via task success.

(D1) Belief Construction Efficiency. Measures how efficiently the agent collapses spatial uncertainty
during exploration. We quantify this using a normalized information gain metric, £. Let M be the
number of possible positions for any object at the start of exploration (a uniform prior), and let C; be
the number of positions for object ¢ that remain consistent with all observations gathered by the agent
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Figure 3: THEORY OF SPACE exploitation task suite: it covers route-level egocentric reasoning
and survey-level allocentric mapping. Route tasks evaluate path-based inference and egocentric
observations. Survey tasks test global mapping, geometric transformation, and perspective conversion.

Together they cover both local navigation reasoning and global spatial abstraction.

Dynamic Group

Belief on Route

Belief on Survey

Static

Pairwise Relation (direction)
report allocentric direction and distance
from A to B.

Allocentric Mapping (alloc.map)
predict global coordinates (and headings)
for all objects.

Forward Dynam-
ics

Perspective Taking (persp.take)

output the observation from a specified
object’s perspective.

Action-to-View (act2view)

given a sequence of Goto/Rotate, pre-
dict the final observation (one object in
FOV with ego direction/distance bins).

Mental Rotation (ment.rot)

predict the sequence of front-facing ob-
jects during a 360° self-rotation.
Location2View (loc2view)

given a global pose, predict the observa-
tion (one object in FOV with ego bins/dis-
tances).

Backward Dynam-
ics

Perspective Decision (perc.dec)

infer which object’s perspective the agent
is currently adopting.

View-to-Action (view2act)

recover an action sequence that produces a
target observation.

View2Location (view2loc)

localize the agent (and optionally orienta-
tion) from a target observation under the
map.

Table 1: Task suite comparison: Route belief emphasizes egocentric, step-by-step path reasoning;
Survey belief emphasizes allocentric mapping and novel view inference.

(calculated by AC-3 algorithm). The efficiency is calculated as £ = 1 —

Zivzl log, max(1,C;) .
Nlog, M . This

score ranges from 0 (no information gained, C; = M) to 1 (all objects perfectly localized, C; = 1).
Note that it can also be used to calculate the accumulated information gain at each step. Information
gain is mainly used in text-based environments, since vision-based environments have direct access
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to scenes without such ambiguity. Therefore, for vision-based environments, we directly use node
coverage to measure exploration efficiency.

Belief Representation and Quality Assessment. A core contribution of THEORY OF SPACE is
disentangling spatial memory from spatial inference. We structurally decompose the probed cognitive
map into two components:

¢ (D2) The Cognitive Map (Observed): Measures fidelity and coherent integration of observations
over time. We evaluate using two criteria: (1) Correctness, alignment with ground truth, computed
as a composite of positional, directional, and facing accuracy; and (2) dynamic reasoning diagnos-
tics, including Perception quality, Self-tracking, Stability, and Local <> Global Consistency,
reflecting internal coherence such as the absence of contradictions within the relational graph and
between maps and relations.

¢ (D3) The Uncertainty Map (Unobserved): Measures how well the agent models plausible
hypotheses about unobserved regions. We assess Uncertainty Modeling by providing a candidate
set of positions formed by randomly sampled points from both observed and unobserved areas,
and measuring the agent’s ability to identify valid locations via F}.

This separation lets us diagnose whether failures stem from misestimating the observed world or from
insufficient reasoning about what remains unobserved.

(D4) Belief Revision. Measures the agent’s ability to revise its spatial belief under latent envi-
ronment changes. We evaluate this using the False Belief task (§5.3)), where objects are covertly
manipulated (translated or rotated) following the initial exploration. The agent must re-explore to
detect these discrepancies; we measure the accuracy of these identified changes (both object identity
and transformation type) using the F} score. Furthermore, we introduce Belief Inertia to quantify
whether belief revision remain biased toward obsolete priors.

(D5) Belief Exploitation Success. Measures task success when the agent must utilize its spatial
belief. For tasks involving spatial relations (direction, persp.take, action2view), we score direction
and distance separately, awarding 0.5 for each correct component. For tasks that output coordinates
(view2loc, alloc.map), we compute a coordinate similarity score.

3.4 EXPLORATION STRATEGIES

To rigorously evaluate spatial cognition, we distinguish between two capabilities: the ability to acquire
information (exploration) and the ability to synthesize it (reasoning). We present two evaluation
settings: (i) Active Exploration, where the agent must plan actions to reduce uncertainty, and (ii)
Passive Comprehension, where the agent reasons over standardized logs generated by scripted proxies.

Uncertainty-Driven On-Policy Exploration. We conduct active evaluation to understand agent
ability in exploring the environment to gather necessary information in building spatial belief.
In this setting, the evaluated agent must plan and execute its own information-gathering policy. At
each step, the agent selects an action based on its observation history and current objective, then
receives new observations (text or image). Exploration continues until the agent issues an exploration
termination or reaches the step budget. Success requires balancing two goals: maximizing coverage
of unknown relations while minimizing action cost. This setting directly reveals whether the agent
can recognize what it does not yet know and actively reduce uncertainty through exploration.

Passive Exploration via Scripted Proxy Agents. Evaluating THEORY OF SPACE requires disen-
tangling two intertwined factors: how well an agent explores, and how well it reasons about the
observations gathered. An agent may fail either due to a suboptimal exploration policy (missing key
evidence) or a deficiency in integrating observations into a coherent belief. To isolate the latter, we
introduce proxy agents as an exploration control. In this setting, evaluated models are fed a fixed
stream of observations generated by a proxy agent. By enforcing a standardized exploration path, we
eliminate variance caused by exploration failures, allowing for a fair evaluation of core reasoning
abilities across different architectures. We design two scripted proxies to provide standardized
exploration logs. The SCOUT agent is used for visual environments, who rotates at each location to
guarantee all objects are observed. Leveraging visual cues like distance, these compact logs are suffi-
cient for accurate belief construction. The STRATEGIST agent is used for text environments, which
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follows a belief-driven edge-coverage policy and actively selects viewpoints to maximally reduce
ambiguity in coarse symbolic observations. It is implemented with AC-3 constraint propagation to
prune inconsistent hypotheses and ensure relations are uniquely determined. Implementation details
for both agents appear in Appendix J[A.T]

4 EVALUATION AND ANALYSIS

We evaluate a set of state-of-the-art proprietary and open-source foundation models. They are
evaluated on both passive and active settings described in § Unless otherwise specified for
ablations, all experiments use three connected 6 x 6 rooms with 4 objects in each (total 12 objects).
To enable a like-for-like comparison between the text and vision settings, we instantiate identical room
layouts across modalities. We use 384 x 384 images in the vision setting. We generate 100 scenes
and create three questions per task per scene, yielding 3 x 9 x 100 = 2700 questions per setting. We
mainly evaluate six foundation models: GPT-5.2 (OpenAlL 2025), GEMINI-3 PRO (Googlel 2025)),
CLAUDE-4.5-SONNET (Anthropicl 2025), GLM-4.6V (Zhipu Al Team| 2025), QWEN3-VL (Bai
et al., [2025) (235B-A22B-Thinking), and INTERNVL-3.5 (Wang et al.| 2025) (241B-A28B). For
closed-source reasoning models GPT-5.2, GEMINI-3 PRO, and CLAUDE-4.5-SONNET, we set the
temperature to 1 and the maximum number of tokens to 32768. For all other models, we set the
temperature to 0. INTERNVL-3.5 supports at most 10 images, so we omit it for the vision-based
world setting.

ao® X C- o ot o® ot o o
e Qe‘sv‘% Q@cc-ée %CO“‘@ @ %\\00‘0 o™ \ocl“‘e \,\e*?ﬁ’\
Static (S) Dynamic (D) Static (S) Dynamic (D)
Methods Avg.step Route Survey Avg.

Vision-based World

Proprietary Models

GPT-5.2 17.2 40.0 367 562 438 403 434 597 569 37.8 46.0
GEMINI-3 PRO 13.6 563 367 682 472 54.0 635 730 654 52.2 57.3
CLAUDE-4.5 SONNET 19.6 237 233 187 333 107 374 347 337 50.9 29.6
Open-source Models

GLM-4.6V 15.0 158 185 33 14.0 0.7 18.9 8.0 18.5 31.8 14.4
QWEN3-VL 16.3 16.8 233 134 248 5.7 258 163 215 43.7 21.3
HUMAN 9.8 945 100.0 100.0 100.0 93.4 934  100.0 100.0 86.7 96.4
HuMAN WITH ToOL* 11.1 100.0 100.0 100.0 100.0 97.8 100.0 100.0 100.0 93.4 99.0

Text-based World

Proprietary Models

GPT-5.2 114 688 705 803 71.0 537 779 810 79.1 66.0 72.0
GEMINI-3 PRO 13.5 780 792 90.6 753 763 81.0 940 833 76.2 81.5
CLAUDE-4.5 SONNET 18.7 653 653 790 627 51.7 688 763 570 67.0 65.9
Open-source Models

GLM-4.6V 14.5 208 197 127  21.8 3.7 139 9.3 22.7 26.2 16.8
INTERNVL-3.5 15.0 288 448 260 36.8 7.3 31.0 277 338 38.9 30.6
QWEN3-VL 14.1 323 457 482 333 117 364 347 357 49.9 36.8
HUMAN 10.8 87.8 82.1 1000 855 86.8 66.6 100.0 95.6 75.8 86.7
HUMAN WITH TOOL* 12.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 91.2 99.0

Table 2: Exploitation Performance (%) of Belief Construction via Active Exploration. Models
autonomously plan actions and are evaluated on exploration cost, route-level reasoning, and survey-
level reasoning across text- and vision-based environments. GEMINI-3 PRO leads every task and
all reasoning metrics, while GPT-5.2 achieves the lowest exploration cost in text-world. Humans
outperform in both settings, especially in vision. *Humans can use instruments such as protractors
and compasses to infer object positions precisely.

Active Exploration Results. We evaluate models as active agents, where they must autonomously
explore the environment to build their spatial belief and terminate the exploration process by their
own. This setting tests the full THEORY OF SPACE pipeline, requiring the agent to simultaneously
plan an efficient information-gathering trajectory, integrate observations, and maintain a coherent
cognitive map under uncertainty. The agent’s performance is measured by its Exploration Efficiency
as shown in § [3.3]and its final accuracy on the downstream spatial tasks. The agent has a maximum
of 20 exploration steps. Table 2] presents the active performance of the models, providing a holistic
view of their ability to translate curiosity into knowledge. Figure ]illustrates information gain over
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Static (S) Dynamic (D) Static (S) Dynamic (D)
Methods Route Survey Avg.
Vision-based World

Proprietary Models

GPT-5.2 473 350 639 545 493 64.8 83.3 50.3 65.6 57.1
GEMINI-3 PRO 638 363 575 490 58.0 672 853 704 57.0 60.5
CLAUDE-4.5 SONNET 473 335 377 408 15.7 54.8 583 447 54.8 43.1
Open-source Models

GLM-4.6V 115 24.5 4.7 19.0 2.7 229 11.7  20.0 33.6 16.7
QWEN3-VL 20.8 283 227 16.7 4.7 332 217 273 40.8 24.9

Text-based World

Proprietary Models

GPT-5.2 84.5 882 97.0 89.0 76.0 963 983 948 89.2 90.4
GEMINI-3 PRO 827 927 970 87.5 75.7 86.2 913 85.7 80.0 86.5
CLAUDE-4.5 SONNET 73.0 80.7  90.7 717 59.0 769 743 59.2 70.7 73.6
Open-source Models

GLM-4.6V 223 39.8 25.0 253 4.7 21.2 9.0 27.0 35.7 234
INTERNVL-3.5 367 678 427 412 8.7 373 19.3 38.7 43.8 374
QWEN3-VL 408 693 565 500 17.7 428 403 425 54.6 45.6

Table 3: Exploitation Performance (%) of Belief Construction via Passive Observations. Models
are evaluated as passive comprehension agents on Route- and Survey-level reasoning using standard-
ized observation logs from scripted proxy explorers, decoupling exploration from belief construction
across text- and vision-based environments. GEMINI-3 PRO leads most tasks in the vision-based
world and achieves the best overall average, while GPT-5.2 leads the text-based world and attains
the best overall average.

the course of the exploration turns. GPT-5.2 acquires substantial information early on, but its rate
of gain slows in later turns, resulting in lower cumulative information gain than GEMINI-3 PRO
and CLAUDE-4.5 SONNET. Moreover, none of the models achieves full coverage relative to the
proxy agent. We benchmarked three human subjects across five text and five vision scenes. Humans
consistently outperformed foundation models in both domains, particularly in vision. Intuitively,
humans scored higher in vision than text as visual information is easier to process. With tools, they
achieved near-perfect accuracy

Passive Exploration Results. We evaluate models on trajectories generated by rule-based proxy
agent to understand a model’s core spatial reasoning ability regardless of its exploration strategy. The
performance of various models in both text-based and vision-based environments is summarized in
Table[3] As evaluated, the results show a clear separation: GPT-5.2 and GEMINI-3 PRO lead by
a wide margin over other systems, particularly open-source models. A substantial modality gap
persists, with text performance far better than vision performance for all models.

@ Key Findings: Modality Gap

* Modality Gap Exists: text significantly outperforms vision.

Overall, active accuracies underperform the passive setting. Incomplete exploration leads to drops:
Figure ] shows that GPT-5.2 gathers information quickly but often terminates prematurely, leaving
uncertainty and lowering active scores relative to passive. Compared to the strategist proxy, which
achieves full certainty, models remain less thorough. A second critical disparity is the efficiency gap.
In the vision domain, the SCOUT proxy reaches target coverage in ~ 9 steps, whereas autonomous
models expend significantly more actions with no performance benefit. This inefficiency is further
highlighted in the text domain. While our primary text experiments utilize the STRATEGIST proxy for
maximum coverage, we additionally evaluated the SCOUT proxy in text world. The text-based SCOUT
similarly averages ~ 9 steps. When following these concise trajectories, GPT-5.2 and GEMINI-3
PRO achieve accuracies of 83.9 and 86.7, respectively. These scores surpass their active exploration
performance (72.0, 81.5 for GPT-5.2 and GEMINI-3 PRO, as in Table |Z|), demonstrating that models
perform better when guided by a short, efficient proxy path than when exploring autonomously.
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Text-based World

Methods 2-room 4-room Accumulated Information Gain
pass. act. steps| pass. act. steps 104 : Il
GPT-5.2 923 778 6.2 | 865 66.0 164 ,/’T' |
=] el
GEMINI-3PRO 867 80.6 62 | 812 777 197 508 e €535 2828
Vision-based World S 0 e 28 O St viet Y
B G e
Methods 2-room 4-room T ﬁ.,/"{ o e !
Eoa y o2 Ty
pass. act. steps| pass. act. steps 8 }/‘ = G Ry
GPT-5.2 593 515 10.8|52.6 403 23.2 £ o2 o
GEMINI-3 PRO 583 57.8 6.6 | 56.2 515 19.7 = s

1 3 5 7 9 11 13 15 17 19 21

Table 4: Exploitation Performance (%) for Steps

Multi-Room Settings (2-room and 4-room). pass.

for passive avg acc, act. for active avg acc, steps Figure 4: Accumulated information gain
for average steps. over exploration steps in the text world.

Different Room Settings. For the two best-performing models, GPT-5.2 and GEMINI-3 PRO, we
further evaluate reasoning and exploration under different room configurations: a four-room setting
and two three-room settings. In the four-room setting, the main room connects to the other three
rooms. Table [ reports results across different room settings. As the number of rooms increases,
exploration cost rises accordingly. For both GPT-5.2 and GEMINI-3 PRO, performance declines
as the room number increases, and the active—passive performance gap widens with room number.
Moreover, GEMINI-3 PRO requires nearly the same number of exploration steps in the text-only and
vision-based environments. Detailed results are in Appendix J[[B]

@ Key Findings: Active Exploration as the Bottleneck

¢ Performance and Efficiency Deficit: Active agents score lower than reasoning on rule
based program histories, and explore less efficiently than the program.

* Incomplete Coverage: Active agent fails to achieve complete information coverage.

¢ Complexity-Widened Gap: The active versus passive difference grows with environment
scale; GEMINI-3 PRO degrades least.

Exploration Pattern Manual inspection of agent exploration histories reveals distinct behavioral
patterns. For GPT-5.2, the active-passive performance gap stems from unsystematic exploration.
Specifically, the agent tends to prioritize any newly discovered door, immediately jumping to inspect it
and often leaving the current room partially unexplored. This is compounded by object omission and
path redundancy. In contrast, GEMINI-3 PRO adopts a more methodical “rotate-and-scan” strategy,
scanning its surroundings before transitioning to new rooms, which is a behavior mirroring the
ScouT proxy agent. Further examples are provided in Appendix {[C]

5 How DO FOUNDATION MODELS MANAGE INTERNAL SPATIAL BELIEF?

In this section, we use the THEORY OF SPACE belief-probing mechanism (as proposed in §2.1)) to
diagnose how MLLMs manage internal spatial beliefs and move beyond treating the agent as a black
box. Figure [5]shows the example of how we probe the belief of agent at each exploration step

5.1 COGNITIVE MAP PROBING

Instead of treating the spatial belief as a black box, we probe the agent’s internal state to distinguish
verifying known facts from hypothesizing about the unknown. The agent externalizes its belief via a
structured JSON containing a Cognitive Map, which records objects currently or previously observed
within the field of view.

Representation. For consolidated map, the agent presents its belief as a single, allocentric cognitive
map serialized in structured JSON. The map maintains (i) a global layout anchored to the agent’s
initial pose, and (ii) a local snapshot that records only the currently visible objects with the current
pose as origin to diagnose immediate perceptual errors.

10
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Figure 5: Internal Spatial Belief Probing. At each step, the agent executes an action, receives an
observation, and updates its spatial belief. We probe this belief by prompting the agent to (i) output a
JSON-structured cognitive map of all observed objects and (ii) select the next unexplored position
from a top-down view given a set of labeled candidate points. For clarity, the figure shows the probing
process for a single step.

Metrics. We evaluate consolidated map using three complementary metrics. Positional ac-
curacy (pos.acc) is the Euclidean similarity between predicted and true object coordinates:
(K/N)-e RMSE/L ‘\here RMSE is the root mean squared error between predicted and ground-truth
object positions, L is the RMS ¢s-norm of the positions of all objects in the scene, and K/N is the
coverage (the ratio of the number of predicted objects K to the number of ground-truth objects N).
Directional accuracy (dir.acc) is the accuracy of directional relationship between each pair of objects.
Facing accuracy (facing.acc) is the fraction of objects whose predicted facing matches the ground
truth.

Using global and local belief representations, we compute a set of diagnostic scores at each turn ¢
(all per-turn except Correctness, which is computed only at the final turn after termination). Unless
noted, scores are averaged over turns and scenes:

e Correctness (final): Measures the accuracy of the agent’s terminal global spatial belief. At
the last turn, we evaluate the predicted global map and report a composite score given by the
(equally weighted) mean of the three metrics defined above, with weights 1/3 each. We compute
diracc only for correctness, since the global cognitive map prioritizes consistent pairwise spatial
relations.

¢ Perception: Measures how accurately the agent interprets newly observed local structure. We
compare the predicted local map to the ground-truth local map for the current field of view (FOV),
counting only objects that appear in the FOV for the first time.

e Self-tracking: Measures how well the model estimates its own pose over time. We infer the
agent’s pose from the predicted global map and compare it against the ground-truth agent state.

* Local <> Global consistency: Measures whether new local evidence is incorporated into the
global belief coherently. Within the same turn, we compare local and global predictions to verify
that newly perceived structure is integrated without contradictions.

11
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o o e@\\ o N o o o N o o
Methods Correctness (%)  Perception (%) éizf:;llT% ) Stability (%) ir ascf(]ifx; e (%) Uncf;; ;‘ inty
Vision-based World
GPT-5.2 20.2 42.0 322|335 724 579 587 654 564 933 64.7 53.7
GEMINI-3 PRO 322 62.5 52.1 |43.8 68.5 529 683 618 620 988 739 70.2
Text-based World
GPT-5.2 91.0 75.1 80.0 | 100 86.8 964 86.0 96.7 67.6 98.0 86.7 64.5
GEMINI-3 PRO 925 75.5 81.4 |99.9 88.2 91.6 848 908 67.7 999 85.2 79.2

Table 5: Spatial Belief Quality via Cognitive Map Probing. We measure final map correctness
and turn-level perception, local global consistency, stability, self-tracking, and uncertainty in text-
vs. vision-worlds. ori. for orientation and pos. for position. Across models, vision lags text on all
metrics, with the largest drop on orientation and stability.

o Stability: Measures whether beliefs about previously observed objects remain non-degrading over
time. For each previously observed object, at every subsequent turn we check that its predicted
state does not worsen; the per-check score is 1 if the prediction is no worse than in the previous
turn.

Results in Table [5]indicate a substantial modality gap between vision and text: performance drops
markedly in the vision setting across all metrics, not just belief Correctness. Self-tracking does not
appear to be a primary bottleneck, models can often maintain an accurate belief about their own pose.
Perception remains a key limitation for state-of-the-art models in visual world settings. In particular,
recognizing an object’s facing direction is especially challenging: agents frequently fail to infer
orientation and achieve near-chance (or worse) facing Correctness. This weakness is consistent with
Table 2| where agents perform poorly on perspective-taking tasks (about 36% accuracy). Stability
& Decay. Crucially, the metric reveals that spatial beliefs are highly brittle not just for orientation,
but also for position. While Perception scores indicate that models can capture local spatial details
with reasonable accuracy, this initial fidelity fails to translate into final map Correctness. This
performance gap highlights a critical failure in state maintenance: even when objects are correctly
perceived initially, the agent frequently overwrites these verified facts with incorrect predictions in
subsequent turns. Thus, the low final Correctness stems not solely from perceptual errors, but from
the cumulative effect of unstable belief updates, where valid spatial memories degrade over the course
of the episode.

@ Key Findings: Cognitive Map Failures (Orientation, Stability, and Belief Drift)

¢ Orientation Gap: Vision perception is a bottleneck, especially for object orientation.
* Unstable Map: Beliefs about previously observed objects degrades over time.
 Belief Drift: New updates corrupt earlier correct perceptions, lowering final correctness.

Cognitive Map Validation & Correlation. To validate the utility of the probed cognitive map and
investigate whether it faithfully reflects the agent’s reasoning process, we first conducted two ablation
studies:

* Sufficiency Test (Oracle Map): We conditioned the model on the ground-truth cognitive map
before generating answers for evaluation. Performance rose to near-perfect levels (=~ 95% for both
models in both worlds). This confirms that our cognitive map representation captures all necessary
information for the tasks; performance bottlenecks stem from the agent’s inability to accurately
construct the map, not the representation format itself.

* Alignment Test (Explicit Reasoning): We prompted the model to explicitly generate the cognitive
map before answering the evaluation questions. This resulted in a slight performance degradation
compared to direct answering.

These results reveal an externalization gap: the model’s latent internal spatial belief is richer or

more accurate than the discretized JSON output it produces. While it is a lossy compression of the
agent’s true internal state, the explicit map remains a strong diagnostic signal. We support this

12
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claim by computing the Pearson correlation between the agent’s cognitive map Correctness and
downstream task performance. To ensure a robust correlation, we calculate the average performance
across five independent cognitive map runs for each sample. As shown in Table[f] belief correctness
is consistently and positively correlated with downstream success in both modalities, with all cor-
relations significant (p < .001). The association is stronger in vision (r=0.570/0.645) than in text
(r=0.418/0.466). The stronger vision correlation suggests that perception-driven mapping errors and
unstable belief updates more directly translate into task failures. Thus, we establish map probing as a
validated diagnostic proxy for failure analysis. While acknowledging that correlation does not imply
causality, we treat the explicit map as a robust, albeit conservative, signal for diagnosing reasoning
breakdowns rather than definitive evidence.

@ Key Findings: Maps as a Diagnostic Proxy

* Lossy but Diagnostic: Though a lossy compression, map correctness correlates signifi-
cantly with downstream success, making it a strong diagnostic signal.

5.2 UNCERTAINTY MAP PROBING

To probe an agent’s ability to model uncer-

tainty, we provide it with a top-down view Methods Text (%) Vision (%)
of the scene in which all objects are re- GPT-5.2 418 570
moved, and we overlay a set of candidate GEMINI-3 PRO 46.6 64.5

points. These points are sampled randomly
and include both previously observed and unob-
served locations. The agent’s task is to iden-
tify which candidate points remain unobserved,
thereby revealing its belief over unseen regions.

Table 6: Pearson correlation (r) between
spatial-belief correctness and downstream eval-
uation performance. All correlations are signifi-
cant (p < .001).

Representation. The agent receives an empty top

down map that shows only the candidate points and its current position, with no objects present. The
agent must select the points that have not yet been observed. In the text based world, the top down
map is represented as an N x M symbolic grid, where different symbols denote the agent, gates, and
candidate points. In the vision based world, all objects are removed and the agent instead receives
a top down image of the environment, check examples in Appendix J[A-T] We use F} to evaluate
selected points.

We report Uncertainty scores in Table[5] GEMINI-3
PRO models uncertainty better than GPT-5.2 in both
text- and vision-based settings. These results help ex-

Accumulated Info Gain & Cognitive Map Correctness

1.0
plain the information gain and cognitive map trends 0.81 §
in Figure [f] GPT-5.2 achieves higher initial infor- [°eg
mation gain (i.e., it ramps up faster), likely because g 0.6 e £
it quickly commits to an explore-the-doors strategy. & "%
However, it generalizes poorly to unobserved regions, < 0.4 043
reflected by the subsequent plateau in Figure[6} ad- - é’
ditional steps yield little marginal gain. In contrast, 0.2 12
although GEMINI-3 PRO improves more slowly at f L e 0_08
the beginning, its cognitive map accuracy continues 13 5 7 9 1113 15 17 19 21

to increase with exploration, suggesting it keeps col- Steps

lecting useful evidence and progressively resolving

. Figure 6: Accumulated Information Gain and
uncertainty.

Cognitive Map Correctness over steps.

5.3 BELIEF REVISION TASK

Spatial intelligence requires not only mapping static
environments but also maintaining beliefs under non-stationarity. Inspired by false belief protocols in
developmental psychology (Wimmer & Perner} [1983]; [Baron-Cohen et al., [1985)) and spatial belief
revision (Knauff et all,[2013)), we introduce a dynamic perturbation task to probe the agent’s ability to
discard obsolete priors and reintegrate new evidence.
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Task Protocol. Following the initial exploration phase, we introduce a discrete environmental shift:
a subset of k = 4 objects are stochastically relocated or reoriented. The agent, retaining its memory
(exploration history), must actively re-explore the environment to identify the state changes. This
requires the agent to detect conflicts between its internal belief state and new sensory observations.

Metrics. We evaluate performance along four complementary axes:

 Identification Accuracy (Fy): How precisely the agent pinpoints which objects changed. We
compute the Fj score for detecting the subset of objects whose position or orientation shifted.

* Average Steps: How efficiently the agent revises its beliefs to completion. We report Total Steps
needed to identify all changes, and Redundancy Steps, defined as the number of steps taken
after the last changed object has been observed. Ideally, Redundancy — 0, indicating the agent
recognizes when updating is complete.

* Belief Correctness: How accurate the updated beliefs are on the changed subset. We compute
correctness as in §5.1] but restrict evaluation to changed objects to isolate the fidelity of re-
exploration.

o Belief Inertia: Whether updating remains systematically biased toward obsolete priors. To
quantify attraction back to pre-shift beliefs, we test whether the residual error of the updated
belief aligns with the direction of the old belief. For each shifted object i, let b?'? denote the
pre-shift belief, b?*“ the post-revision belief, and g!*“ the post-shift ground truth. Define the
prior-offset and post-revision error vectors: v; = b?ld — ghe? e, = prew — ghew We define
positional inertia as

sPos — e;rvi -exp (_ ||bznew B bgld||2> .
' l[eill lvill + € 20°
Directional alignment (cos 6;) Proximity weight (w;)

Here cos 8; is large when the remaining error after updating still points toward the obsolete
location, while w; downweights such alignment when the belief has moved far from b?'¢. We set
o to a dynamic noise scale: the RMS localization error on the first re-observed unchanged objects
during re-exploration; € ensures numerical stability. Under unbiased updating, E[s}”°] ~ 0,
whereas sP°° > 0 indicates systematic pull toward the obsolete prior. For orientation shifts, we
measure inertia via s¢™' = 1 (¢ = ¢¢'?) , where ¢ denotes the predicted orientation. It flags
failures to overwrite the obsolete facing direction.

Table[7)corroborates the modality gap observed in previous sections: vision-based agents significantly
underperform their text-based counterparts. This performance drop is characterized by increased
exploration redundancy and lower accuracy in identifying changed objects. Notably, while belief
inertia persists across both modalities, it is markedly more severe in vision-based agents, particularly
regarding object orientation. Vision models frequently fail to overwrite their initial spatial memory,
persisting with obsolete facing estimates despite new visual evidence. This also suggests that
fine-grained orientation estimation remains a critical bottleneck for visual spatial reasoning.

@ Key Findings: Vision Deficiencies & Belief Inertia

* Vision-based Revision Failures: Vision agents suffer from excessive exploration redun-
dancy and poor accuracy in identifying object shifts.

* Belief Inertia: Agents, especially vision-based ones, persist in obsolete spatial coordi-
nates despite new observations.

14



Published as a conference paper at ICLR 2026

,&\\ \'66' 0{\. QOS . 0{\. % 0{\. oS

Methods Avg, Steps |  Identification (%) 1 Corfe‘*c':ﬁ;s 1t InEft';Zf(% "
Text-based World

GPT-5.2 6.92 0.55 97.9 98.4 89.5 69.7 5.5 12.5

GEMINI-3 PRO  7.79 0.18 98.7 98.8 91.8 72.9 7.9 5.7
Vision-based World

GPT-5.2 13.06 6.20 14.3 68.0 16.7 429 68.9 34.7

GEMINI-3 PRO  10.29 3.23 239 82.5 30.3 63.1 51.1 14.4

Table 7: Belief updating under environmental shifts. After relocating/reorienting k=4 objects,
we evaluate change identification, re-exploration cost (including redundancy (red.)), and belief
correctness/update in text- vs. vision-worlds. Vision agents require more redundant steps and show
severe orientation inertia, failing to overwrite obsolete facing beliefs despite new evidence.

6 RELATED WORK

Passive Spatial Reasoning. Early paradigms treat spatial reasoning as static inference: given a textual
description, agents answer relational queries (Weston et al., 20155 |Shi et al., 2022} Mirzaee et al.,
2021} [Li et al.||2024)). Other benchmarks probe understanding from a single image, asking for relative
directions, topological relations, or metric attributes (Ma et al., 2024} |Deng et al.| {2025} |Cheng et al.,
2024} |Chen et al.| 2024; |Liao et al., [2024; Kamath et al.,[2023)). Multi-view and video benchmarks
raise difficulty by requiring cross-view integration, egocentric—allocentric conversion, and temporal
consistency (Yang et al., 2025c} |Xu et al., [2025; Wu et al., 2025} |Yeh et al., [2025; |Gholami et al.,
20255 Zhou et al.,2025b). Recent works explicitly adopt cognitive maps: VSI-Bench (Yang et al.|
2025a) shows map formation improves video QA, and MindCube (Yin et al.| |2025)) demonstrates
that predicting layouts boosts multi-view reasoning. While informative, these benchmarks remain
disembodied, as agents reason only over pre-collected trajectories.

Active Exploration for Spatial Understanding. Research has also examined agents that actively
explore, but their exploration is usually tied to task-specific goals rather than building a general
spatial belief. Embodied question answering benchmarks evaluate agents by whether they can gather
evidence to answer questions (Das et al., 2018} |Gordon et al.,|2018; Majumdar et al., |2024; |Ginting
et al.} 2025 |Ren et al., 2024)). Instruction-following settings extend household tasks to long horizons
and realistic scenes, often with dialog or language grounding (Shridhar et al.|[2020b; |[Kim et al.| [2024;
Shridhar et al., 2020a; [Puig et al.l 2018} [Padmakumar et al., |2022}; |Gao et al.| |2022). Navigation
benchmarks stress path execution and generalization across diverse environments (Anderson et al.,
2018; Jain et al., 2019; Ku et al., |2020; Krantz et al.| [2020; [Nguyen & III, 2019; Wang et al.|
2024; Zhao et al.||2025)). Spatial reference tasks focus on grounding natural-language descriptions
in embodied search (Qi et al.l 2019; Zhou et al.| 2025a)), and manipulation (Jiang et al., 2023}
Mees et al., [2022; |Srivastava et al.| 2022; |Wu et al}[2023)). While existing benchmarks incorporate
active perception, they largely rely on task-driven foraging. This paradigm conflates the efficiency
of environmental exploration with downstream task performance, often fostering brittle spatial
representations that lack generalizability (Bonawitz et al., 2011). Beyond the above task-driven
active exploration, EXCALIBURZhu et al.|(2023) also considers task-agnostic exploration, but its
RL training can induce goal leakage and encodes maps implicitly in policy weights. In contrast, we
study zero-shot foundation-model agents with no environment-specific training for task-agnostic
exploration, emphasizing exploration efficiency via minimal-cost uncertainty reduction (rather than
coverage), and evaluating not only task success but also the belief construction process via explicit
belief probing.

7 CONCLUSIONS

We introduce THEORY OF SPACE, which asks whether foundation models can function as spatial
agents under partial observability: not merely answering questions from fixed views, but actively
acquiring information through self-directed exploration to construct, revise, and exploit an internal
spatial belief. Building on this framing, we contribute a new evaluation paradigm centered on
task-agnostic active exploration, downstream spatial tasks for belief exploitation assessment, and
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explicit probing of internal beliefs via cognitive-map externalization. We implement THEORY OF
SPACE in a multimodal environment that instantiates parallel text- and vision-based worlds, enabling
controlled diagnosis of failures across symbolic versus perceptual observation streams. A key
strength of this design is that it makes spatial belief measurable rather than implicit. By requiring
models to externalize evolving cognitive maps and uncertainty over unobserved regions, THEORY
OF SPACE evaluates more than end task accuracy: it reveals the correctness, internal consistency,
and temporal dynamics of belief formation, and quantifies how localized mistakes propagate into
global map corruption over time. Empirically, active exploration is a major bottleneck: end-task
performance drops and exploration is less efficient than passive viewing, with the gap widening as
room complexity increases. Belief probes make these error sources explicit: in vision, perception
error often appears early, and models also exhibit belief instability, where correct information is
later overwritten or forgotten, cascading into inconsistencies and lower map fidelity. Finally, when
environments change and previously held beliefs must be revised, models exhibit strong belief inertia.
They fail to overwrite obsolete priors, and this inertia is especially pronounced for vision-based
models, particularly for orientation and facing updates. Taken together, THEORY OF SPACE reframes
spatial evaluation from “can the model answer?” to “can the model build and maintain a coherent,
revisable spatial world model through efficient information gathering?” We hope this benchmark and
its belief-centric measurements provide a foundation for developing models with (i) uncertainty-aware
and efficient exploration policies, (ii) robust state/belief maintenance under long horizons, and (iii)
reliable mechanisms for revising beliefs when the world changes.
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APPENDIX

A TECHNICAL DETAILS

A.1 BENCHMARK CONSTRUCTION

We expose the ToS world as a Gym-like interface (Brockman et al} 2016): agents interact in discrete
steps under partial observability at a resolution of 384 x 384 to construct and revise an internal spatial
belief, which we later exploit in evaluation tasks. Scenes are procedurally generated multi-room
layouts on an N x M grid with n named indoor objects (each with integer (z,y) and heading in
{N,E,S,W}) and a randomized agent spawn pose. We restrict multi-room layouts to a tree topology:
the room—adjacency graph is connected and acyclic (no loops).

Text-based World At each step, OBSERVE returns a symbolic snapshot of objects in the current
room within a 90° forward FOV. For every visible object we provide discretized egocentric direction
(e.g., front-left) and distance bins (e.g., near/mid/far), plus object identity and facing when deter-
minable. Egocentric observations are rendered with a 90-degree field of view (FOV), discretized
into angular and distance bins as specified in Figure[7a] Visibility is room-bounded; doorways act as
transparent portals only when the agent stands in them, enabling dual-room visibility. Optional noise
modules perturb bins for ablations.

Vision-based World We procedurally generate scenes in a 3D simulator with two controllable
parameters: the level (number of rooms) and the object count per room. Objects are drawn from a
library of 293 distinct 3D models, grouped into 6 categories and 37 subtypes, primarily everyday
household items (see Figure[7b). To ensure diversity, each object type appears at most once in a given
scene.

Model Overview

Furniture @ Transportation @ Utensils Appliances Toys Clothing
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(a) Field of view (FOV) specification for the (b) Distribution of all 3D models used in our vision
agent in our tasks. The FOV spans 90° in tasks.

front of the agent and is divided into angular

bins (e.g., front, front-slight left, front-left)

and distance ranges (near [0,2], mid [2,5],

far [5,10]). This egocentric perception de-

fines how spatial relations are observed and

reported.

Figure 7: Demonstration figures for FOV and 3D model distribution

For task setup, we additionally generate instructional (Figure[8)) and orientation (Figure[J) images
that serve as references for the agent in vision-world. We include both images in the vision prompt.
Object placement follows validity constraints (e.g., collision avoidance, minimum spacing), and
random seeds control reproducibility across environments.
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Figure 8: Example of distance cues in the vision prompt. The colored cylinders illustrate objects
placed at different distances from the agent: yellow at 2 m, blue at 1 m, red at 2 m, and green at 3 m,
providing calibration for mapping visual observations to discretized distance bins.
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Figure 9: Object appearance and orientation cues in the vision prompt. Objects with facing
direction are shown from both the front and side views, while objects without inherent orientation
are displayed only from the front view. This provides the agent with consistent visual references for
recognizing shape and facing.

Information Gain Calculation We use the AC-3 arc-consistency algorithm to maintain, for each
object, a domain of feasible grid cells. Initially, every object’s domain spans the entire 20 x 20 map.
Each new observation is compiled into unary and binary constraints (e.g., egocentric direction/distance
bins, room visibility/occlusion, and ALLDIFFERENT to prevent collisions). When a constraint is
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added, AC-3 iteratively prunes any cell in one object’s domain that is unsupported by the domains of
related objects, propagating revisions along incident arcs until a fixed point is reached (all arcs are
consistent). While AC-3 alone does not guarantee global consistency, in our setting all constraints are
derived from a valid trajectory; therefore the ground-truth assignment remains supported and is never
pruned, ensuring that domains stay non-empty throughout propagation.

Proxy agents We implement two scripted proxies to provide strong, reproducible baselines.

ScouT. From its spawn pose, the agent performs a 360° sweep (four cardinal ROTATE+OBSERVE
actions) to capture all views at the initial location. It then follows a fixed room-visitation order: upon
discovering a doorway, it enters the adjacent room, executes the same sequential sweep, and repeats
this “visit-sweep—advance” routine until every room has been observed at least once.

STRATEGIST. The first stage mirrors SCOUT: a panoramic sweep to register all currently visible
objects. Thereafter, within the current room the agent maintains, for each object, a set of feasible
positions (“domain”) induced by accumulated observations. At each turn it: (i) selects the object with
the largest remaining domain (highest positional uncertainty); (ii) moves to a viewpoint that best
constrains this object (e.g., near it or along a sightline that intersects the most candidate cells); (iii) at
that viewpoint, orients to test pairwise relations: it computes unresolved pairwise directions between
the target object and all others in the room, identifies the direction bin with the highest outstanding
count, and OBSERVES in that orientation first. The procedure iterates until all objects in the room are
resolved (domains shrink to singletons), then proceeds to the next unvisited room and repeats.

Prompts We show the detailed designs of our prompts for exploration in Figure [I0] evaluation
prompts in Figure cognitive map prompts in Figure [[2] and top-down view for uncertainty
modeling in Figure
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Figure 10: Exploration prompts
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Pairwise Direction

You return to your starting position and face north.
From a Top-Down map, describe where
{obj_name} is relative to {anchor_name}.

Answer format: <cardinal direction>, <distance>

Example: north-west, near

Perspective Taking

Now you jump to {anchor_name}'s direction, facing
its direction. Describe where {obj_name} is relative
to you.

Answer format: <ego direction>, <distance>

Example: front-left, near

Perspective Determine

Now you jump to an object's position, facing its
direction. You observe that {observation}. Which
object are you standing at?

Answer format: <object_name>

Example: lamp

Action2View

You return to your starting position and face north.
You will execute the following action sequence:
{actions}

After executing the actions, what is the ego relation
of {target} relative to you?

Answer format: <ego direction>, <distance>
Example: front, near

View2Action

You return to your starting position and face north.
Then you have executed an action sequence and
changed to a new location and facing direction.
You observe the following:

{final_obs}

What action sequence led to this final view? The
action sequence must be valid and only contain
move actions.

Answer format: <sequence of move actions>
Example: JumpTo(lamp), Rotate(90)

Allocentric Map

Treat your starting position as the origin (0, 0) while
facing north. Report allocentric coordinates using (x
right/east, y up/north).
Objects: {object_list}.

Answer format: (x0, y0); (x1, y1); ... in the same order.

Example: (1, 0); (-2, 3); (0, -1)

Mental Rotation

You return to your starting position and face north.
You will perform a full 360-degree rotation by
continuously turning {turn_direction} in place.
Assume all walls are removed (you can see through
walls), so every object is visible.

Focus on this set of objects: {object_pool}.

List them in the exact order they appear directly
ahead while you rotate.

If two objects share a bearing, place the nearer one
first.

Answer format: <object_name1>, <object_name2>, ...

Example: mug, sofa, plant

Location2View
{origin_instruction}You move to {loc} and face
{direction}.

What is the egocentric relation of {target}?

Answer format: <direction>, <distance>

Example: front, near

View2Location

You move to a new location and face {orientation}.
{observations}

{origin_instruction}What is your new 2D coordinate (x,
y)?

Answer format: (X, y)
Example: (2, -1)

Figure 11: Evaluation prompt design. We show the prompt for each evaluation task.
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Cognitive Map Prompt - Base.

[Cognitive Map (JSON)]
Represent the scene as a JSON map.

[Schema (shared)]

- position: [x, y] integers
- facing: "north|southleastjwest" (global) or
“+x|-x|+y|l-y" (local/rooms)

[General rules (shared)]
- Include only observed objects.
- MUST include facing key if the object has

facing direction.

Cognitive Map Prompt - Global

[Global Cognitive Map]

- Grid: concise global map on an NxM grid,
- Frame: origin [0,0] is your initial position;
your initial facing direction is north.

- Content: include all observed objects and
gates; include the agent

- Facing: use "north|southleastwest"
(cardinal direction only).

[Example]
“agent"

“east'),
“chair”: {"position": [2, 4], "facing":

osition”: [2, 3], "facing™:

"sofa": {"position": [5, 1], "facing": "west'}

Cognitive Map Prompt - Local

[Local Cognitive Map]
- Structure: include an "objects" dict; each object's
position and facing are refative to the agent at
time of writing.
- Frame: must include "or gent'. Always
keep in mind that the origin is the agent's current
position and orientation.

- +y: facing forward

- when facing +y: +x -> right, x -> left, -y ->
backward

- Al positions/facings relative to this frame.
- Content: "objects" dict; include all objects and
doors in your current field of view; exclude agent
- Facing: se "+x|-x|+y|-y" (local axes).

[Example]
{

Cognitive Map Prompt - Base (False Belief)

[Cognitive Map (JSON)]
Represent the scene as a JSON map.

[Schema (shared)]
- position: [x, y] integers

- facing: "north|southleastjwest" (global) or
“ax|-x|+y|-y" (locallrooms)

[General rules (shared)]
- MUST include facing key if the object has
facing direction.

Cognitive Map Prompt - Global (False Belief)

[Global Cognitive Map]
- Grid: concise global map on an NxM grid.
- Frame: origin [0,0] is your initial position;
your initial facing direction is north.

- Content: include ALL objects and gates;
include the agent

- Facing: use "northlsouthleastjwest"
(cardinal direction only).

NOTE: you must include all objects and
gates.

[Example]
"agent”; {"position”: [2, 3], "facing:
"east"},
"chair": {"position": [2, 4], "facing":
"north"},
"sofa": {"position™: [5, 1], "facing": "west"}

Cognitive Map Prompt - Uncertainty map (text)

#it# Fog Probe
{symbol_def}

The map displays candidate points
labeled A-Z.

Select the points that are located in
unexplored/unobserved regions.
Map:

{symbol_map}

Example:

“unexplored”: ['A", "C']
)il

L

Cognitive Map Prompt - Uncertainty map (vision)

#it# Fog Probe

The map visualizes the environment:
- *North is Up."™

- *Coordinates*": (0, 0) is at the
bottom-left. X points Right (East), Y
points Up (North).

- *Grey points**: All positions with
integer coordinates.

- **Red letters (A-Z)**: Candidate
points to evaluate

- **Blue point**: Your current position.

Select the candidate points (Red
letters) that are located in
*“unexplored/unobserved** regions.
Map:

{image_map}

Example:
{

"unexplored":
B

Figure 12: Belief probing prompt design. We use these prompts to ask the model to output a
cognitive map or select unobserved points.

Symbol Map (text)

FhEHEH SRR
oo T hEEER RS
#.. SRR
HAL ... HEEEEE RS
#I. FHEFHEH S
oo HEEEER RS
#.0F. Lk dE R
[didiiadidididisdsidi
Foool

#.H.

Foooo.

#.C.G

#B.E

#..K...
FheHEERE. .
ifidddddsdsdsasaaadad

#: wall

. empty cell
A-K: object

+ : door

*: agent position

Image Map (vision)

o : empty cell
e : object
e : agent position

Figure 13: The symbol map and the image map provide parallel representations of the same
environment for text and vision settings in uncertainty probing prompts.
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B EVALUATION SETUPS

To enable a like-for-like comparison between the text and vision settings, we instantiate identical
room layouts across modalities. Concretely, we generate 100 evaluation instances with IDs 0-99; for
each ID, we use the ID itself as the random seed to drive task sampling in both environments. This
seed tying guarantees deterministic layouts and bit-for-bit reproducibility across modalities.

Additional Results We show detailed results for different room settings including two-room
and four-room layouts. In both the two-room and four-room settings, we use the same room size
and the same number of objects per room as in the three-room setting. For the four-room setting,
we connect the main room with all the others. We evaluate GPT-5.2 and GEMINI-3 PRO, the two
best-performing models. Additionally, we tested higher resolution, but found no performance
gain. Table[8]and[9|report passive and active performance of the two-room setting. Table [[0]and[T1]
report passive and active performance of the three-room setting. As the number of rooms increases,
exploration cost rises accordingly. The results also underscore the importance of efficient exploration:
in the four-room setting, which demands more strategic exploration, the gap between active and
passive performance becomes substantially larger.

5«%\\0“\)& o '\%Y&Qe & lz&«e"‘ \]‘\@,m‘" o o “\e(\x,@‘ \oa_q\e*" q,\@,.”L\oc
Static (S) Dynamic (D) Static (S) Dynamic (D)

Methods Route Survey Avg.
Vision-based World

Proprietary Models

GPT-5.2 392 373 63.3 538 583 682 927 523 68.6 59.3

GEMINI-3 PRO 57.8 339 538 485 58.7 64.6 833 54.7 69.8 58.3
Text-based World

Proprietary Models

GPT-5.2 853 920 99.0 90.0 83.0 972 99.7 89.5 95.2 923

GEMINI-3 PRO 882 8.7 917 873 793 90.1 92.7 81.5 82.9 86.7

Table 8: Exploitation Performance (%) via Passive Observations under two rooms settings.

6\(6&0‘;@@? A KAY&QQ(C & ‘%cx’)ﬂ-‘e\)l {\e«%o\ AC o oot 50\\00’7,\1\5‘)1 " Q\N’L\"c
Static (S) Dynamic (D) Static (S) Dynamic (D)
Methods Avg.cost Route Survey Avg.
Vision-based World
Proprietary Models
GPT-5.2 10.8 413 362 482 490 547 569 720 452 59.7 51.5
GEMINI-3 PRO 6.6 517 363 630 472 560 634 850 503 67.5 57.8

Text-based World

Proprietary Models
GPT-5.2 6.2 687 673 900 76.8 640 834 927 737 83.7 77.8
GEMINI-3 PRO 6.2 76.0 683 89.0 772 727 83.1 960 775 86.2 80.6

Table 9: Exploitation Performance (%) via Active Exploration under two rooms settings.

6«@0“00?@‘%? '@Y&w“ 8 .Acm'@‘” q\e"mé R 0 me““(()\ \oc:yﬂ'\e"J q\e\ﬂ\oc
Static (S) Dynamic (D) Static (S) Dynamic (D)

Methods Route Survey Avg.
Vision-based World

Proprietary Models

GPT-5.2 47.0 37.7 59.7 383 40.3 60.1 73.7 50.5 65.9 52.6

GEMINI-3 PRO 63.5 35.5 587 428 43.0 64.4 81.7 488 67.4 56.2
Text-based World

Proprietary Models

GPT-5.2 83.8 88.2 94.3 86.8 62.7 94.8 93.7 82.0 92.5 86.5

GEMINI-3 PRO 812 913 96.7 822 683 76.8 81.3 74.2 79.0 81.2

Table 10: Exploitation Performance (%) via Passive Observations under four rooms settings.
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(\'\(60‘\023<$9“#2@(0&0',Ag\"ﬂ\e\ﬂ q\e"{)‘w\ %\\00-‘“ %Q“\e“\“o‘\odﬁ@« {\C‘N’L\OG
Static (S) Dynamic (D) Static (S) Dynamic (D)
Methods Avg.cost Route Survey Avg.
Vision-based World
Proprietary Models
GPT-5.2 232 412 332 490 308 307 325 497 405 55.4 40.3
GEMINI-3 PRO 19.7 598 342 603 347 460 56.8 627 440 64.8 51.5
Text-based World
Proprietary Models
GPT-5.2 16.4 653 690 743 628 443 66.6 763 575 778 66.0
GEMINI-3 PRO 19.7 763 772 917 733 643 77.0 837 740 81.9 71.7

Table 11: Exploitation Performance (%) via Active Exploration under four rooms settings.

C ADDITIONAL VISUALIZATION EXAMPLES

We include concrete examples of task formats and answer styles with open-ended, format-constrained
outputs in Figure

Cognitive map output by models We visualize the turn-by-turn cognitive maps (in Figures [I5]and
of GPT-5.2, comparing them against ground-truth maps. The performance is noticeably stronger
in text-based environments than in vision-based ones.

Exploration pattern examples by models We include representative trajectories from each model
to illustrate the active exploration patterns identified in our analysis, shown in Figure
and[21|. These examples highlight how different models manifest recurring exploration behaviors:
for instance, GPT-5.2 often adopts a “finding-gate” strategy, rotating until a doorway is detected
before moving toward it, while other models more frequently repeat redundant checks. All figures
mark the agent’s position and orientation explicitly, with actions annotated beneath each frame and a
shared legend provided for each trajectory.

Analysis Platform We also include some demonstrations in Figure and 26| of our
designed platform for better analysis
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Pairwise Direction

Q: You return to your starting position and face
north.

From a Top-Down map, describe where shelf is
relative to truck.

A: south east, mid distance

Perspective Taking

Q: Now you jump to backpack's direction, facing its
direction.
Describe where chair is relative to you.

A: front-left, mid distance

Perspective Determine

Q: Now you jump to an object's position, facing its
direction. You observe that truck is front-left, mid
distance, facing backward; shelf is front, mid
distance. Which object are you standing at?

A: laptop

Action2View

Q: You return to your starting position and face
north.

You will execute the following action sequence:
1. Jump to the object at front-right, mid distance.
2. Rotate(-90)

3. Jump to the object at front-right, mid distance.
4. Rotate(-180)

After executing the actions, what is the ego relation
of bike relative to you?

A: front-right, mid distance

View2Action

Q: You return to your starting position and face
north. Then you have executed an action sequence
and changed to a new location and facing direction.
You observe the following: pan is at front-right,
slightly far, facing backward; truck is at front-right,
mid distance, facing forward; laptop is at front, mid
distance, facing backward What action sequence
led to this final view?

A: [['rotate’, 90], [jumpto’, 'green door'],
[jumpto’, 'shelf', ['rotate’, 180]]

Allocentric Map

Q: Treat your starting position as the origin (0, 0)
while facing north. Report allocentric coordinates
using (x right/east, y up/north). Objects: shelf, truck,
lamp.

A:[[12, -1], [10, 1], [0, 4]]

Mental Rotation

Q: You return to your starting position and face
north. You will perform a full 360-degree rotation by
continuously turning counterclockwise in place.
Assume all walls are removed (you can see through
walls), so every object is visible. Focus on this set of
objects: bike, pan, television. List them in the exact
order they appear directly ahead while you rotate. If
two objects share a bearing, place the nearer one
first.

A: ['television', 'pan’, 'bike']

Location2View

Q: Treat the green door as the new 'origin’ (0, 0).
You move to (2, -5) and face north. What is the
egocentric relation of pan?

A: front, mid distance

View2Location

Q: You move to a new location and face north. You
observe: pan is at front, mid distance, facing right;
truck is at front-right, mid distance, facing left; green
door is at front-slight-left, slightly far, on left wall
Treat the green door as the new 'origin' (0, 0).

A: [2,-5]

Figure 14: Examples of task formats and answer styles used. Each block illustrates a spatial
reasoning task type in our suite (Route-level and Survey-level), including the corresponding input
context and an example open-ended answer that must follow a strict output format. In the vision
setting, textual scene descriptions in the questions are replaced by rendered observation images.
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Figure 16: GPT-5.2’s turn-by-turn cognitive map in vision world during exploration.
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Figure 17: Example trajectory illustrating GPT-5.2’s door-finding strategy and systematic sweeping
pattern: Upon detecting a door, the agent navigates toward it and executes a strategic rotation
to maximize environmental coverage. The process terminates once all target objects have been
successfully identified.
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Figure 18: Example trajectory illustrating GPT-5.2°s omission pattern: Observing the door too early
may lead the agent to skip the rest of the exploration, causing incomplete environmental discovery.
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Figure 19: Example trajectory illustrating GEMINI-3 PRO’s door-finding strategy and systematic
sweeping pattern in vision world: Upon detecting a door, the agent navigates toward it and executes a
strategic rotation to maximize environmental coverage. The process terminates once all target objects
have been successfully identified.
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Figure 20: Example trajectory illustrating GEMINI-3 PRO’s object sweeping pattern mostly found
in text world: Orbit the starting object using it as the pivot point. Randomly select an observed door
to jump to a new object, then resume pivoting around the new target in a continuous loop.
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Figure 21: Example trajectory illustrating CLAUDE-4.5 SONNET’s exploration pattern: There is no
clear exploration pattern.
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Figure 22: Platform designed by us for analysis (chart)
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Figure 23: Visualization Platform for analysis: Metrics for active exploration in text world
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Figure 24: Visualization Platform for analysis: Metrics for active exploration in vision world
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Figure 25: Visualization Platform for analysis: one turn of active exploration in text-world, including
agent’s action and cognitive map.
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Figure 26: Visualization Platform for analysis: one turn of active exploration in vision-world
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